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Abstract Tectonic tremor in Taiwan is known for its short duration and weak amplitude. Recent
observations from the mountain area (Central Range) allows us to document such type of tectonic tremor
recorded at a close distance and to investigate a single station technique for a minute‐long tremor. To
effectively distinguish tremor from earthquakes and noise, we applied the Fisher's class separability criterion
to automatically select the optimal feature subset from a set of commonly adopted feature candidates.
During the study period of 1 January to 16 September 2016 when a local seismic array was deployed, we
successfully differentiated tremor from local earthquakes and noise with high accuracy of 86.6% to 98.9%
from three stations using a k‐nearest neighbors classifier. Other than the maximum amplitude, number of
peaks, and energy of the 2‐ to 8‐Hz passband, the spikiness of discrete Fourier transforms median in time is
also found to be important to separate tremor from noise.

1. Introduction

Tectonic tremor is long‐lasted (several minutes to days), noise‐like seismic signal with 1‐ to 10‐Hz frequency
band. The lack of impulsive P and S arrivals in the signal represent a slow slip process at the fault interface
(e.g., Dragert et al., 2004). They have been observed in various tectonic regions, typically adjacent to the
locked portion of the fault (e.g., Miyazawa & Mori, 2005; Nadeau & Dolenc, 2005; Obara, 2002; Peng &
Chao, 2008; Rubinstein et al., 2009; Wech & Creager, 2008), where the triggering potential for large earth-
quakes is found to be likely if the adjacent locked zone is critically stressed (Ito et al., 2013; Kato et al.,
2012; Kato & Nakagawa, 2014; Obara & Kato, 2016; Socquet et al., 2017; Uchida et al., 2016). In places where
geodetic measurements do not have enough resolution or slow slip events are small or short in duration, tec-
tonic tremor is often regarded as a powerful tool for monitoring slow slip events. The detection of tectonic
tremor relies heavily on the similarity of and the time lapse between the arrival of tremor bursts from multi-
ple stations (Obara, 2002). The tectonic tremor is generally identified by a high envelope waveform similarity
with nearly the same arrival at different stations, a higher energy than the incoherent background noise, and
a much longer duration than ordinary earthquakes. Station coverage and density, therefore, are the key fac-
tors for the detection capability. In places where tremor signals are weak in amplitude and short in duration,
the signals were manually checked to exclude swarms of small earthquakes or loud noise (e.g., Chen et al.,
2018), resulting in a time‐consuming and subjective determination of tremor catalogs.

Single station detection of tectonic tremor has been proposed using a variety of methods on Cascadia data.
Brudzinski and Allen (2016) used the amplitude ratio of 2‐ to 5‐Hz passband to a long‐term average to scan
for tremor activity. Kao et al. (2007) used (1) the mean of the absolute amplitudes of 1.5‐ to 5.0‐Hz band‐pass‐
filtered signal and (2) the square root of the normalized variance of the signal intensity to recognize tremor.
Sit et al. (2012) used the ratio of 2‐ to 5‐Hz passband to 10‐ to 15‐Hz and 0.02‐ to 0.1‐Hz passbands to discard
the influence of seismic activity and successfully identify tremor. Such frequency scanning approach is
found to reduce erroneous signals and detect smaller tremor episodes unrecognized previously.
Comparing with network‐wide processing, the frequency scanning at a single station shows common iden-
tification of large episodic tremor and slip events in Cascadia with the detection capability up to 50 km from
the station (Sit et al., 2012). However, the above single station detection methods are applied to hour‐long
tremor episodes. In our study area, the tectonic tremor lasts only several minutes, ranging from 1 to 37
min with the median of 4 min (Chen et al., 2018). Such short duration makes it difficult to avoid
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influences of local earthquakes and cultural noise during the single station processing mentioned
previously.

Advances in machine learning techniques allow for an automatic search for patterns in large data sets. In
volcanic areas, the recognition of seismic signatures has long been studied for different classes of volcanic
seismic events (Curilem et al., 2009;Masotti et al., 2006, 2008). Automatic classification methods have also
been applied to differentiate blasts and earthquakes (Fäh & Koch, 2002; Laasri et al., 2015; Reynen &
Audet, 2017; Vallejos &McKinnon, 2013); shallow and deep earthquakes (Mousavi et al., 2016); local, regio-
nal, and teleseismic earthquakes (Giudicepietro et al., 2017); rockfall, earthquakes, and noise (Hibert et al.,
2017; Provost et al., 2016); and earthquakes and explosions (Kortström et al., 2016). Among the above‐
mentioned studies, a variety of supervised classifiers were used, including Random Forest (RF; Svetnik
et al., 2003), Artificial Neural Network (Haykin, 1999), hidden Markov Models (Eddy, 1996), and support
vector machines (Vapnik, 1998). The previous methods of single station detection in Cascadia focus only
on the amplitude for tremor passband (1–5 Hz; Brudzinski & Allen, 2016; Kao et al., 2007; Sit et al., 2012),
where the detection criteria heavily depends on station quality and signal‐to‐noise ratio. Using
Convolutional Neural Network, Nakano et al. (2019) successfully discriminated tremors from local earth-
quakes and noise in spectral images. Which seismic features exactly are needed for tremor recognition
remain unexplored? Taking advantage of stations deployed at a mountain area on the top of the tremor zone,
we attempt to document a more complete tremor catalog and to investigate the single station technique for a
minute‐long tremor. In this paper, we demonstrate the performance of a supervised classifier k‐nearest
neighbor (k‐NN) on a data set comprising of M ≥ 2 local earthquakes, ambient tremor, and natural noise
in Taiwan, to evaluate the possibility of detecting minutes‐long tremor using a single station. Our main goal
is to discriminate ambient tremor from local earthquakes and natural noise by investigating how this k‐NN
classifier performs with seismic data at different stations. We also aim to obtain a collection of efficient seis-
mic features for successful classification in future monitoring systems.

2. Tectonic Tremor in Taiwan

Tectonic tremor in Taiwan have been previously identified for different purposes, while the detection
schemes vary. Chuang et al. (2014) attempted to obtain the significant tremor activities in Taiwan based
on the following detection criteria: (1) higher than waveform cross‐correlation coefficient (ccc) >0.95
between stations, (2) averaged signal‐to‐noise ratio greater than 1.15, and (3) durations longer than 300
s. In Idehara et al. (2014) and Ide et al. (2015), an envelope correlation hypocenter method was adopted
that requires ccc higher than 0.5 between stations. After locating tremor using differential arrival time
measurements that are derived from waveform cross correlation, a spatiotemporal clustering technique
is applied to remove isolated events. Similar to the above method, Chao et al. (2017) used the waveform
envelope correlation and clustering method by Wech (2010) to obtain a preliminary event catalog, follow-
ing by a spatiotemporal clustering criterion to exclude ordinary earthquakes. Using temporary arrays, Sun
et al. (2015) used both the broadband frequency‐wave number beamforming and moving‐window grid
search methods to detect weak tremor signals. To detect tremor with stable azimuth and deep origin, they
ask for (1) the detected duration longer than 3 min while the array envelop function is coherent among
nearby stations, (2) the back azimuth from two methods that is consistent (<30° difference), (3) wave
number that should be smaller than 1.5 cycles per kilometer, and (4) waveform cross‐correlation values
that should be higher than 0.02. Chen et al. (2018) used slightly different criteria from Ide et al. (2015)
and Chao et al. (2017) to improve the completeness of tremor catalog. In this study, we adopted the
method in Chen et al. (2018) to include short‐duration and isolated events and exclude events that are
too short to be discriminated from earthquakes. Given that a more complete catalog leads to the involve-
ment of short‐duration tremor in Taiwan, it is challenging to prevent the misidentification of tremor,
earthquake swarms, and loud noise.

Using three‐component broadband seismograms recorded by the Broadband Array in Taiwan for
Seismology, Central Weather Bureau Seismic Network (CWBSN), and a temporary array deployed on the
southern Central Range from 1 January to 16 September 2016 (colored triangles in Figure 1), identification
of tectonic tremors was carried out by two stages. At the first stage we used 28 stations from Broadband Array
in Taiwan for Seismology, 12 stations from CWBSN, and three stations from the mountain array. The three‐
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component seismograms were band‐pass filtered from 2 to 8 Hz, enveloped, and low‐pass filtered to 2 Hz.
Using a 300‐s moving window with a 150‐s overlap, we then applied the detection criteria below: (1)
Waveform ccc should be higher than 0.6 for more than 10 stations, and (2) a signal‐to‐noise ratio should
be greater than 1.2. With these criteria, the events were obtained for hypocenter determination using envel-
ope cross‐correlation approach by Ide (2010). To avoid the occasional contamination of tremor signals by
swarm of microearthquakes, a visual inspection was later applied using only the 12 stations near the tremor
zone (colored triangles in Figure 1a) at the second stage.

As a result, 97 tremor events with duration ranging from 221–771 s were identified in the study period.
Using the waveform envelope correlation and clustering location scheme from Wech and Creager
(2008) and a local 1‐D shear wave velocity model (Huang et al., 2014), the 97 tremor events were relo-
cated (black dots in Figure 1). The distribution of tremor events reveals a NS striking and SE dipping
ellipsoidal concentrating at the depth from 20–40 km. Such fault orientation is consistent with the SE dip-
ping thrust Tulungwan fault that acts as a boundary between a slate belt of moderate metamorphic grade
and a relatively unmetamorphosed fold‐and‐thrust belt (Chen et al., 2018; Huang & Byrne, 2014). At the
stations deployed on the mountain (BENA, GUAN, and WULU), the tremor signals appear to be higher
in amplitude comparing with other stations, as shown by the waveform examples in Figure 2. As Taiwan
tremor is known for its short duration (1–37 min) and weak amplitude (Chen et al., 2018; Chuang et al.,
2014), we attempt to investigate the single station technique that is well suited to detect the short and
weak tremor. To do so, we select three stations for different classes of seismic signals to demonstrate
the performance of a supervised classifier.

3. Labeled Data

Using the tremor catalog built in this study and earthquake catalog from CWBSN, three classes of events
including local earthquake, tectonic tremor, and ambient noise were labeled. Figures 3a–3c show example

Figure 1. (a) Map of stations distribution and tremor catalogued in this study. (b) cross‐sections A‐A′ and B‐B′ showing a southward dipping ellipsoidal structure.
The stations deployed on the southern Central Range from 1 January to 16 September 2016 are denoted by red triangles (BN = station BENA; KA = station GUAN;
WL = station WULU). Stations in the Broadband Array in Taiwan for Seismology (BATS) and Central Weather Bureau Seismic Network (CWBSN) are denoted by
blue and green triangles, respectively. Open triangles indicate the stations used in envelope cross‐correlation approach for early detection, while the filled triangles
are the stations used for a visual inspection.
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of their waveforms at three selected stations of BENA, GUAN, and WULU (blue triangles in Figure 3d). The
stations BENA and GUAN are selected due to their short distance to Tremor, while YULB located further
northeast is selected for comparison.

The first class of events, local earthquakes (hereafter called “Earthquake”), is composed of 291M ≥ 2 events
with three components that were randomly chosen from the CWBSN earthquake catalog. To minimize the
difference in path effect from different propagation distances, we only considered earthquakes with an epi-
central distance less than 30 km (gray circles in Figure 3d) for three examined stations. We manually dis-
carded earthquakes that were not distinguishable from noise to ensure the quality of the training data.
The resulting Earthquake population shows that 78%, 70%, and 87% of events are smaller than M3 for
BENA, GUAN, and YULB, respectively, while 100%, 100%, and 44% events are shallower than 20 km for
BENA, GUAN, and YULB, respectively.

The second class, ambient tremor (hereafter called “Tremor”), was identified during the deployment period
from 1 January to 16 September 2016 (as described in the previous section). We use the time window of 60 s
that is comparable to the shortest duration in the published 2007–2012 tremor catalog. Note that, unlike
Earthquakes, minute‐long Tremor is difficult to be identified by a single station, given that their amplitude
is similar to Noise in the 2‐ to 8‐Hz frequency range (Figures 3f and 3g).

Figure 2. Example of the 2‐ to 8‐Hz‐filtered, E‐W component velocity seismograms for a ~500‐s‐long tremor recorded at
eight stations. This event occurred on 24 February 2016. For location of the seismic stations, please see filled triangles in
Figure 1.
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The third class, ambient noise (hereafter called “Noise”), was selected 60 s before the arrival of the 291 events
in class Earthquake and manually checked to exclude small earthquakes. Based on the timing of the local
earthquakes, most of the Noise occurred in daytime.

Once the three classes of data were identified and labeled, three components of the waveforms were pre-
pared (291 × 3 events for each class) and cut into 60‐s window for the computation of the seismic features
(detailed in section 5). In each class and each component, the 204 of the total 291 events were selected for
training data, while 87 events were saved for test data. The additional set of 87 × 3 events was used to eval-
uate the single‐station k‐NN classifier.

4. k‐NN Classifier

From a pattern‐recognition point of view, a simple classifier is preferred for feature evaluation, since sophis-
ticated classifiers (e.g., support vector machine, hiddenMarkov model, and Neural Net) may compensate for

Figure 3. Examples of 2‐ to 8‐Hz‐filtered, N‐S component waveforms for (a) Local earthquakes, (b) Ambient Tremors, and (c) Natural Noise. (d) Map of the study
area (denoted by a red rectangle in the upper left diagram). Gray and yellow circles represent the labeled local earthquakes and ambient tremors, respectively.
Open triangles indicate the stations used in envelope cross‐correlation approach for early detection, while the filled triangles are the stations used for a visual
inspection. Stations used in the classification are GUAN, BENA, and YULB, as denoted by the text. (e–g) Sixty‐second waveform examples at the YULB station for
three classes of data. Gray and red traces show raw data and 2‐ to 8‐Hz‐filtered waveforms, respectively.
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the weakness of a feature and be difficult to reflect the true classification capability of the feature. Therefore,
the commonly used k‐NN method is chosen as the classifier herein.

The k‐NN classification algorithm is implemented in two steps (Mitchell, 1997): (1) Define a training set con-
taining set of N‐dimensional data points; (2) given a test data point x to be classified, let x1, x2, …, xk denote
the k data points from the training set that are nearest to x; then, return the class that the majority of the k‐
NN are from. The nearest neighbors of x are defined in terms of the standard Euclidean distance. Moreover,
to avoid possible tie situations, the free parameter k should be set as an odd number. If k is set as 1, the k‐NN
classifier becomes the nearest‐neighbor classifier, which might suffer from the overfitting problem due to
outliers. The performance of classifier can be evaluated by Leave‐One‐Out Cross Validation strategy
(LOO‐CV). LOO‐CV uses a single observation from a given data set as the test data, and the remaining obser-
vations as the training data. This is repeated such that each observation in the data set is used once at a time
as the test data (Efron & Tibshirani, 1993) to infer the classification rate (CR). In Figure 4 we performed a
sensitivity test on the selection of k. There appears to show a general trend of decreasing CR with increasing
k except for the Z component at GUAN station where the signal‐to‐noise ratio is lowest as <0.1. When the
CR from different components and stations are summed, the highest cumulative CR occurs when k = 3.
Accordingly, we set k as 3 in the present study, as the same setting in some studies related to pattern recogni-
tion (Liao et al., 2017).

In this study, we extended the binary k‐NN classifier to solve the three‐class classification problem of Tremor
versus Earthquake versus Noise by using one‐against‐one method and a majority voting strategy (Liu &
Chen, 2007). For an L‐class classification, L(L − 1)/2 binary classifiers need to be performed. In our experi-
ments, test data are sent into three k‐NN classifiers, one for Tremor versus Earthquake, one for Earthquake
versus Noise, and the remaining one for Tremor versus Noise. The final classification output for these test
data is then determined based on the majority of the three class labels generated from the three k‐
NN classifiers.

5. Seismic Signal Features

Signal features are chosen based on seismic signatures that are commonly exploited for event classification.
We follow the features proposed in Provost et al. (2016) and Hibert et al. (2017) where the signals of rockfall,
earthquakes, and noise were classified using more than 60 seismic features. The selected features are

Figure 4. Classification rate as a function of k. Different color represents data from different station and component, while
black curve represents the sum of data points from different stations and components.
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associated with waveform, spectral content, spectrogram content, polarization, and network geometry. In
this study, the lack of station coverage near the source area may produce large uncertainty in describing
source and station property. The selected features here are simplified only to waveform, spectral, and spec-
trogram content with the time window and frequency range that is suitable for the signals of interest. To
train the model, 27 seismic features are computed based on the characteristics of the temporal waveforms
(first family), spectral content (second family), and energy concentration of the frequency and time
(third family).

The first family of features is focused on seismic waveforms. As shown in Figure 3a, while Earthquake is
characterized by emergent onset, short duration, and clear peak amplitude with exponential decay of energy,
Tremor, and Noise usually exhibit no sharp arrival, no clear peak amplitude with long duration (Figures 3b
and 3c). The parametrized features include the ratio of the mean and median over the maximum for the
envelope signal, the maximum envelope amplitude, the time of the maximum envelope amplitude, the kur-
tosis and skewness of the raw signal and envelope, and the energy in the first third and the remaining parts
of the autocorrelation function, as identified by features 1–8 in Table 1.

The second family of features focuses on the spectral content of the signals (features 9–19). Tremor is
generally deficient at a high frequency band (>1 Hz). Compared with the background noise of the local
night time, Tremor are enriched over 1–10 Hz with a higher amplitude; the background noise of the
local daytime, however, reveals very similar patterns that makes the identification of Tremor in
Taiwan somewhat challenging. This is the reason why more Tremor were detected at night due to
the lower noise level (Chao et al., 2011; Chuang et al., 2014). Figure 5a shows a comparison of the spec-
tra using 60‐s window signals at station GUAN, the curve represents the medium value from 97 events
for each class and each component. Earthquake appears to be rich in higher frequency range (>0.5 Hz),
which is distinguishable from the other two classes. In a range of 2–8 Hz, Tremor can be further sepa-
rated from Noise by showing relatively higher amplitude. In contrast, Noise shows higher amplitude
than Tremor in lower frequency band below 0.5 Hz. This large‐amplitude microseism peak at 0.2–0.5
Hz is commonly seen at land stations and the ocean‐bottom seismometers in the offshore area of east-
ern Taiwan (Lin et al., 2010). The difference between classes, however, is only visible using medium
value. Plotting all 97 events in the same diagram reveals strong variation (Figure 5b), suggesting the dif-
ficulty of finding a criterion in spectrum for classification. We computed the maximum amplitude of 2–8
Hz and number of peaks in the 2‐ to 8‐Hz‐filtered envelope (features 12 and 13) that are commonly
considered by human operators for tremor detection. We also consider the energy and kurtosis of the
signal over three frequency bands (0.1–1, 2–8, and 0.05–0.1 Hz). After computing the discrete Fourier
transform (DFT) of the signals, we also calculated the kurtosis of the maximums for all DFTs as a func-
tion of time. The mean ratio between the maximum and mean and the maximum and median for all
DFTs was calculated as well.

The third family of features focuses on spectrogram that have three dimensions in time, frequency, and
energy (features 20–27). Earthquake spectrogram reveals a sharp increase of high frequency energy (>10
Hz) at arrival of signal, followed by an exponential decay of energy. Three different components reveal simi-
lar characteristics in spectrum. Tremor and Noise are deficient in high frequency, while Tremor is relative
strong. Using DFT, we computed the energy concentration in the frequency domain by counting the number
of peaks in the curve to show the temporal evolution of the DFT maximums, means, and medians.

It is noticed that the selected features have different units and presumably each feature takes a different
range of values. In the present study, the feature values were normalized to have zero mean and unit var-
iance using the z‐score normalization method before the features are fed into the k‐NN classifier.
Assuming f is a feature value of a specific feature, the normalization is given by (f − m)/sd, where m and
sd are the mean and standard deviation of all the values of that feature in the training data, respectively.
Note that data scaling plays a critical role in data preprocessing (Cao et al., 2007). Models trained on scaled
data usually have higher classification performance compared to the models trained on unscaled data,

6. Fisher's Class Separability Criterion

To evaluate the classification performance of the feature candidates and select an optimal feature set by
using Fisher's class separability criterion, we aim at finding the top‐ranked features that achieve the
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highest classification accuracy. Fisher class separability criterion is a filter method for feature selection in the
machine learning community (Fang et al., 2015). The Fisher method computes the Fisher score (F score) for
an individual feature that is defined by the ratio of interclass scatter and intraclass scatter; the higher the
value of the F score, the higher the between‐class separability of the feature. Accordingly, the features can
be ranked based on their F scores. For more details of the formula of the two scatter matrices, please refer
to the article by Liu et al. (2017).

Table 1
Computed Features for Training Data

ID Description

Temporal waveforms (1st family)

#1 Ratio of the mean over the max of the envelope —

#2 Ratio of the median over the max of the envelope —

#3 Maximum envelope amplitude —

#4 Time of the maximum envelope amplitude —

#5 Kurtosis of the raw signal
E x−μð Þ4

σ4 , where μ is the mean of x, σ is the standard deviation of x,

and E(t) represents the expected value of the quantity t.
(using MATLAB R2017b inbuilt function kurtosis)

#6 Kurtosis of the envelope See #5

#7 Skewness of the raw signal
E x−μð Þ3

σ3 , where μ is the mean of x, σ is the standard deviation of x,

and E(t) represents the expected value of the quantity t.
(using MATLAB R2017b inbuilt function skewness)

#8 Skewness of the envelope See #7

Spectral content (2nd family)

#9 Energy in the first third of the autocorrelation function
∫
T
3C τð Þdτ
0 , with T: signal duration, C: autocorrelation function.

(using autocorrelation function code by Calvin
Price from MathWorks)

#10 Energy in the remaining parts of the autocorrelation function See #9

#11 Ratio of the above two features —

#12 Maximum amplitude of the 2‐ to 8‐Hz waveform —

#13 Number of peaks of the 2‐ to 8‐Hz‐filtered envelope (using MATLAB R2017b inbuilt function findpeaks)

#14–16 Energy of the signal filtered at 0.1–1, 2–8, and 0.05–0.1 Hz
∫
T

0 yf tð Þdt, with yf: filtered signal in the frequency range (f1–f2)

#17‐19 Kurtosis of the signal at 0.1–1, 2–8, and 0.05–0.1 Hz See #5

Energy concentration in frequency and time (3rd family)

#20 Kurtosis of the maximums of all discrete Fourier
transforms (DFTs) as a function of time

DFT: discrete Fourier transform

Kurtosis ( max
t¼0;…T

SPEC t; fð Þ½ �) with
SPEC(t, f): the spectrogram

#21 Mean ratio between the maximum
and the mean of all DFTs mean max SPECð Þ

mean SPECð Þ
� �

#22 Mean ratio between the maximum and the median of all DFTs See #21

#23 Number of peaks in the curve showing the temporal
evolution of the DFTs maximum

(using MATLAB R2017b inbuilt function findpeaks)

#24 Number of peaks in the curve showing the temporal
evolution of the DFTs mean

(using MATLAB R2017b inbuilt function findpeaks)

#25 Number of peaks in the curve showing the temporal
evolution of the DFTs median

(using MATLAB R2017b inbuilt function findpeaks)

#26 Ratio between features #23 and #24 —

#27 Ratio between features #23 and #25 —

Note. The bold text is simply the function name in the matlab program.
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7. Results
7.1. Experiment I: All 27 Features on the Training Data

Using the 27 features listed in Table 1, we used three components of data from stations BENA, GUAN, and
YULB and evaluated the classification performance of the features using the k‐NN classifier set at k = 3. We
designed and conducted three different experiments. In Experiment I, we applied LOO‐CV on the training
set consisting of 204 labeled events for each class and each station. From these events, one is chosen as test
data, while the remaining events are treated as training data for the calculation of classification accuracy
(CR). This LOO‐CV procedure is repeated until each event in the data set is used once as the test data
(Efron & Tibshirani, 1993). Every misclassified event gives a classification error of 0.16% (1/612). In this
experiment, all 27 features are extracted from every event; each event is represented by a 27‐dimension fea-
ture vector. In other words, the experiment was conducted to test the CR on the training set without
feature selection.

The confusion matrix in Table 2 shows that at station YULB, 75 Tremor are misclassified as Noise, while 97
Noise are misclassified as Tremor. At station GUAN, 38 Tremor are misclassified as Noise, while 44 Noise
are misclassified as Tremor. At station BENA, 13 Tremor are misclassified as Noise, while 19 Noise are mis-
classified as Tremor. This leads to the highest CR at station BENA (93.7%) and lowest at stations YULB
(68.6%). To explain the strong variation of CR among stations, we further examine the variability in wave-
forms and spectra by computing ccc for event pairs (Figure 6) and coefficient of variation (cv) in each fre-
quency bin of 0.01 Hz (Figure 7), respectively. Here the cv is determined by the standard deviation of
measurements by the mean value. We hypothesize that, the higher variation of data in the same class would
result in distinct value for a given feature (in time or frequency domains), leading to higher misidentification
rate. In Figure 6, we found that 1.5%, 5.5%, and 0.2% of Noise signals have cc higher than 0.5 for BENA,
GUAN, and YULB station, respectively, while 37.3%, 33.6%, and 53.3% of Noise signals show low cc
(<0.1). The variation in frequency domain appears to be significantly larger at station YULB, as reflected
by cv > 2 at lower frequency band (<0.1 Hz). At higher frequency band (>0.2 Hz) the cv remain smaller than
1.5 at three stations. Summarizing above, small waveform similarity and large amplitude difference in each
frequency bin can be the diagnosis for higher variability of Noise signals at station YULB. This may produce
higher interclass scatter in seismic features selected in this study to produce lower CR. The same hypothesis,
if applied to Tremor signals, the differences in waveform similarity and spectral behavior are minor compar-
ing with Noise.

Figure 5. (left) Averaged Fourier spectrum of the broadband waveforms at GUAN station for Earthquake (red), Tremor (blue), and green (Noise). Three different
components are denoted by slightly different colors. For each class and each component, 97 events are normalized with the maximum as 1. (right) Plot of Z‐
component spectrum for each class (thin lines) and median value (thick line) for each frequency bin.
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7.2. Experiment II: Selected Features on the Training Data
7.2.1. Feature Ranking
In Experiment II, the seismic features were selected based on the Fisher's class separability criterion. As
shown in Figure 8a, at BENA station, the features with highest F scores that discriminate Earthquake from
Tremor are #1, #2, #8, and #9 corresponding to the ratio of the mean and median over the maximum of the
envelope, skewness of the envelope, and energy of the first third of the autocorrelation function. The fifth‐
ranked feature #6 has much lower F score (less than half of the maximum in this plot) and therefore is
regarded as less significant and neglected in the comparison below. In Figure 8b, to discriminate
Earthquake from Noise, the features with top three F scores are #1, #2, and #8 that are the same with the
top three in Figure 8a. For Tremor versus Noise classification (Figure 8c), the top F scores that are higher
than half of the maximum correspond to the features #25, #15, #12, and #13. They are number of peaks
in the curve showing the temporal evolution of the DFTs median (#25), energy of the signal filtered at 2–
8 Hz (#15), maximum amplitude of the 2‐ to 8‐Hz waveform (#12), and number of peaks of the 2–8 Hz fil-
tered (#13). None of these are common to the high‐ranking features for Earthquake versus Noise and
Earthquake versus Tremor. For Tremor versus Noise classification, the highest F score (2.8) appears to be
much lower than those for Earthquake versus Tremor (7.9) and Earthquake versus Noise (10.5), indicating
a low discriminability comparing with other two class pairs.

Two other stations in Figures 8d–8i reveal similar high‐F score features. That is, the high‐ranking features at
station BENA (#1, #2, #8, and #9) are commonly found at stations GUAN and YULB for Earthquake versus

Table 2
Comparison of Classification Rate for Different Experiments Using 2016 Tremor Catalog

BENA GUAN YULB

Eq. Tremor Noise Eq. Tremor Noise Eq. Tremor Noise

I Earthquake 204 0 0 93.7 203 0 1 86.4 187 11 6 68.8
Tremor 3 188 13 0 166 38 2 127 75
Noise 3 19 182 0 44 160 0 97 107

IIa Earthquake 204 0 0 98.8 203 1 0 89.4 195 7 2 86.6
Tremor 0 200 4 0 168 36 1 164 40
Noise 0 7 197 0 34 170 0 45 159

IIIb Earthquake 86 0 1 95.7 86 0 1 70.8 81 5 0 76.6
Tremor 1 78 8 0 29 58 0 46 41
Noise 0 1 86 0 17 70 0 14 73

aExperiment I: using Leave‐One‐Out Cross Validation on training data and all 27 features. bExperiment II: using Leave‐One‐Out Cross Validation on training
data and features selected using Fisher score. cExperiment III: using test data and features selected by Fisher score.
The bold text is simply the function name in the matlab program.

Figure 6. Histogram of cross‐correlation coefficient between Noise event pairs for each station.
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Tremor and Earthquake versus Noise. For Tremor versus Noise, the top F scores go to the features #25, #13,
#12, and #15 at station GUAN and #12 and #15 at station YULB, which shares common features with station
BENA (#25, #15, #12, and #13). As the F score represents discriminability between classes, the extremely
low F score at stations GUAN (<0.9) and YULB (<0.4) could be associated with the high variation in
Noise (as revealed in Figure 7) that increases the interclass scatter.
7.2.1.1. Feature Selection
To select features that improve the classification accuracy, we perform LOO‐CV to calculate the classifica-
tion accuracy using the top‐N‐F score‐ranked features. More precisely, we compute 27 times of CR for each
station and each component, starting with top‐ranked feature. In each run we add a lower‐ranked feature;
once the CR is higher than the previous calculation, this feature is kept in the best feature subset. This is
called add‐one‐feature‐in strategy for reaching the bestN features (Lin et al., 2010; Wu et al., 2018). The opti-
mal feature subset refers to the top‐N‐F score‐ranked features that give the highest LOO‐CV classification
accuracy for 1 ≤N ≤ 27. The first feature that gives a lower LOO‐CV is determined to be the cutoff. For more
details, please refer to the studies by Lin et al. (2010) and Wu et al. (2018).

For different stations and different binary classification models (Earthquake vs. Tremor, Earthquake vs.
Noise, and Tremor vs. Noise), the optimal feature subsets could be different; namely, the numbers of best
features N could be different. The N features required for improving CR are colored squares in Figure 9,
while the number in the box indicates the ranking. As can be observed, the top‐ranked features are
mostly common over stations for Earthquake versus Tremor. If the top five ranked features appear at
three stations, we regard them as efficient features. The efficient features for discriminating Earthquake
from Tremor are #1, #2, #8, and #9, the same with those for discriminating Earthquake from Noise.
The efficient features for discriminating Tremor from Noise are #12, #13, #15, and #25. Note that #25
is also considered efficient because it performs as top one feature at two stations, even not recognized
as important at station YULB. These four features are distinct from the features needed to classify
Earthquakes. Summarizing the above, for a binary classification models and for a specific station, the
steps in Experiment II are (1) using the training set to compute the F score of each feature, (2) ranking
the features according to their F scores, and (3) using the add‐one‐feature‐in strategy to find the best fea-
ture subset (i.e., the top N features).

The resulting confusion matrix is shown in Table 2. At station YULB, 40 Tremor and 1 Earthquake are mis-
classified as Noise, while 45 Noise are misclassified as Tremor. At station GUAN, 36 Tremor are misclassified
as Noise, while 34 Noise are misclassified as Tremor. At station BENA, four Tremor are misclassified as

Figure 7. Coefficient of variation in amplitude for each freqeuncy bin (0.01 Hz) for Tremor (a) and Noise (b). The coefficient of variation is determined by the stan-
dard deviation (SD) divided by the mean.
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Noise, while seven Noise are misclassified as Tremor. However, the CR is progressively improved for
Experiment II (86.6–98.8% with average of 91.6%) using selected features ranked by the F score.

7.3. Experiment III: Selected Features on the Test Data

In Experiment III, we fed all the test data consisting of 261 events for each station into the k‐NN classifier,
where the training data are the ones used in Experiment II. Note that the test data do not participate in the
calculation of the F scores for another run of feature selection. For each binary classification model and each
station, each test event is represented by anN‐dimensional feature vector in which the elements are the opti-
mal feature subset determined in Experiment II.

With the test data, Experiment III reveals an averaged CR of 81.0% due to the low CR at station GUAN
(70.8%; Table 2). At station YULB, 41 Tremor are misclassified as Noise, while 14 Noise are misclassified
as Tremor. At station GUAN, 58 Tremor are misclassified as Noise, while 17 Noise are misclassified as
Tremor. At station BENA, eight Tremor are misclassified as Noise, while one Noise are misclassified as
Tremor. The high misclassification rate for Tremor at station GUAN might be most responsible for the
low CR of 70.8%.

Figure 8. Fisher score as a function of feature ranking for the training data at stations BENA (a–c), GUAN (d–f), and YULB (g–i). (upper panel) Earthquakes versus
Tremor. (middle) Earthquake versus Noise. (lower) Tremor versus Noise.
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Using the same selected features, the CR of the trainingmodel in Experiment II is higher than that in the test
data (Experiment III). The F score performance for test data (Figure 10), although not used for reselection of
features, can be used to compare with the training data (Figure 8) for the similarity and difference. The low
CR in Experiment III can be reflected by low F score for Tremor versus Noise as 0.75 at station GUAN and
0.30 at station YULB in Figure 10. The high‐ranking features for Earthquake versus Tremor and Earthquake
versus Noise in Figures 8 and 10 are highly similar with those for Experiment II (#1, #2, #8, and #9).
However, for discriminating Tremor and Noise, the high‐ranking features in Experiment III are not the
same with those discovered in Experiment II. At station BENA, the top four ranked features in
Experiment III coincide with the efficient features selected in Experiment II (#25, #13, #15, and #12 in
Figures 10c, 10f, and 10i) but not with those identified at stations GUAN and YULB. The less consistent
high‐ranking features for Tremor versus Noise may explain the lower CR at stations GUAN and YULB in
Experiment III (Table 2).

Despite the lower F score for Tremor versus Noise in Experiment III (and therefore lower CR), the common
high‐ranking feature #25 is observed at three different stations for Tremor versus Noise. This feature, num-
ber of peaks in the curve showing the temporal evolution of the DFTs median, is also found to be top one
ranking at stations BENA and GUAN in Experiment II (Figures 8c and 8f). This suggests that, different from
#12, #13, and #15 identified in Experiment II that are all associated with characteristics of the 2‐ to 8‐Hz‐
filtered signals, the spikiness of energy in time‐frequency domain could be important for discriminating
Tremor from Noise.

8. Discussion
8.1. Seismic Features Useful for Tremor Detection

Very recently an improved Convolutional Neural Network method was applied on running spectral images
to identify tectonic tremor, local earthquake, and noise by Nakano et al. (2019). They successfully obtained a
high accuracy up to 99.5% using all components and stations available in the tremor zone. However, they
pointed out that the tremor signals strongly contaminated with noise, if included in the training data set,
would produce much lower recall down to 67.9%. This challenge was met here as the Tremor in Taiwan
being highly similar with Noise in amplitude (Chuang et al., 2014) and spectral behavior (Figure 5).

Figure 9. Feature ranking result based on Fisher score for different binary classifications: Earthquakes (C1) versus Tremors (C2), Earthquakes(C1) versus Noise
(C3), and Tremors (C2) versus Noise (C3). For each classification all the 27 features were extracted from the signals. The number in each square indicates the
ranking based on Fisher score. The higher the F score of a feature is, the lower the number is (and higher ranking). The colored squares indicate the best subset of
features determined by Leave‐One‐Out Cross Validation strategy. For example, for Earthquake versus Tremor classification the best three‐feature subset for BENA
station is {#1, #2, #8}.
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Different from Nakano et al. (2019) where the features selection was not conducted, this study attempts to
select the best features using the Fisher's criterion.

Tremor in Taiwan have been previously identified using different study periods with different purposes
(Chao et al., 2017; Chen et al., 2018; Chuang et al., 2014; Ide et al., 2015; Idehara et al., 2014; Sun et al.,
2015). The common practice of tremor identification is based on waveform similarity, time lapse, and event
duration using three components for 2‐ to 8‐Hz‐filtered envelope data at multiple stations. Using machine
learning techniques, we found that four features that allow us to successfully separate Tremor from Noise,
including the maximum amplitude, number of peaks, and energy of the 2‐to 8‐Hz‐filtered signals (#12,
#13, and #15) and number of peaks in the curve showing the temporal evolution of the DFTs median
(#25). Among the above features, #25 is the one that has never been previously considered in tremor identi-
fication schemes. Figure 11a shows the clustered Tremor and Noise data over the feature space for #13 and
#25. The limited overlap suggests that the selected features are useful to separate Tremor from Noise, while
the optimal boundary seems to be nonlinear. Figures 11b–11d show the example of maximum, mean, and
median of DFTs for three classes of events at station BENA. Comparing with Noise, Tremor has highly simi-
lar shape in time evolution of the DFTs but smaller magnitude. In this example, the number of peaks for
three measurements of DFTs shows distinct value. Among features #23 (DFTs maximum), #24 (DFTs
mean), and #25 (DFTs median), only #25 show significant difference between Tremor and Noise.

Figure 10. Fisher score as a function of feature ranking for the test data at stations BENA (a–c), GUAN (d–f), and YULB (g–i). (upper panel) Earthquakes versus
Tremor. (middle) Earthquake versus Noise. (lower) Tremor versus Noise.
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We also test the robustness of #25, using the classifier trained on the catalog from different year in 2013 com-
posed of 272 Earthquake, 548 Tremor, and 610 Noise events. From F score performance, the feature #25 is
found to be characterized by high F score (3.8) with top two ranking at the station YULB. This suggests that
#25 is a robust feature that is less influenced by time variability of the Noise data.

8.2. Selection of Noise Events in the Training Data

To understand whether the choice of Noise influences the key features for discriminating Earthquake,
Tremor, and Noise, we also demonstrate the different spectral behavior between daytime and nighttime
Noise. Here the 204 daytime Noise events are randomly selected from 6 a.m. to 6 p.m. during the study per-
iod, while the 204 nighttime events are from 7 p.m. to 5 a.m. The daytime Noise is generally noisier than
those in nighttime, while their patterns of spectrum remain similar. The variability in spectra in Figure 12
reveals strong variation in daytime data (i.e., cv higher than 5.5) other than nighttime data. The cv behavior
in daytime Noise (Figure 12a) is similar to the original data in Figure 7b—a largest cv at low frequency (<0.1
Hz) for station YULB. The nighttime events, however, reveals very similar cv patterns between stations. The
cv behavior likely controls the consistency of feature ranking result. If we replace Noise in the original train-
ing data (i.e., mostly daytime events) by the 204 nighttime events, the top‐ranking features are now shown in
Figure 13 (colored squares with numbers). The efficient features for discriminating Earthquake from Tremor

Figure 11. (a) A reduced feature space showing the discrimination between Tremor (red) and Noise (blue) using features #13 and #25. Different symbols indicate
the different components. (b–d) Example for the maximum (red line), mean (orange line), andmedian (yellow line) values of discrete Fourier transforms (DFTs) for
three classes of events recorded at station BENA. (b) M2.5 Earthquake occurred on 15 February 2016 at 20:24:32. (c) Tremor event occurred on 15 February 2016 at
00:53:29. (d) Noise event occurred on 1 January 2016 at 10:12:00. Number of peaks for maximumDFTs (#23), mean DFTs (#24), andmedian DFTs (#25) is indicated
by the text next to the label.
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are #1, #2, #8, and #9, the same with those for discriminating Earthquake from Noise except for #8 (top one
features at BENA and GUAN but top six at YULB). The efficient features for discriminating Tremor from
Noise are #12, #13, #15, and #25. The selected features for three binary models are the same with what
obtained from our original data set in Figure 9, suggesting that the choice of Noise may not influence the
key features for discriminating Earthquake, Tremor, and Noise.

8.3. Possible Bias in the Classification Model

Our current results were based on a data set limited to the availability of local array on the top of tremor. The
size of the training data is confined to 9‐month data period of temporary array. We test the time stability of

Figure 12. Coefficient of variation in amplitude for each frequency bin of 0.01 Hz for (a) daytime Noise from 6 a.m. to 6 p.m. and (b) nighttime Noise from 7 p.m. to
5 a.m. Here the standard deviation (SD) and mean of amplitude from 204 daytime and 204 nighttime events for each station are computed.

Figure 13. Feature ranking result based on Fisher score for different binary classifications: Earthquakes versus Tremors, Earthquakes versus Noise, and Tremors
versus Noise. Here Noise events are selected only from nighttime. For each classification all the 27 features were extracted from the signals. The number in each
square indicates the ranking based on Fisher score. The higher the F score of a feature is, the lower the number is (and higher ranking). The colored squares indicate
the best subset of features determined by Leave‐One‐Out Cross Validation strategy.
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the classifier by using classifier trained on the 2016 catalog to identify events of 2013 catalog. Given that the
BENA and GUAN were not available in 2013, for this test data set we use the Z‐component seismograms
from a single station YULB. This test data set is composed of 272 Earthquake, 548 Tremor, and 610 Noise.
The resulting CR is reduced to 52.3%, mainly due to the misclassification of Noise (23% of Noise are incor-
rectly classified as Earthquake and 43% are incorrectly classified as Tremor). Out of 548 Tremor, 10% and
24% are incorrectly classified as Earthquake and Noise, respectively. The time instability of Noise character-
istics results in poor classification performance, as the standard deviation in Noise's spectrum for the 2016
data is significantly smaller than that in 2013 data. If classifier is now trained by the 2013 data without fea-
ture selection, the CR for YULB reaches 95.6%, much higher than the 68.8% using the 2016 data (Experiment
I). When Fisher's class separability criterion is applied, we found that the F score for Tremor versus Noise
increases to 21, leading to very high discriminability between the two classes. The different F score perfor-
mance from two different time period suggests that the nature of Noise and Tremor have strong variation
in time.

The reported results out of the 2016 data have shown that our method is capable of dealing with the tremor
classification for three single stations. However, we also found that the variation of Noise is considerably
large. The complex spatiotemporal behavior of Noise cannot be represented by a single class; hence, the cur-
rent data sets (the 2013 and 2016 catalogs) may not represent the real distribution of Noise. Thus, whether
our current method can generalize well to large‐scale and/or different time period data sets needs further
investigation. If attempting to use the trained classifier for detecting tremor in continuous data, there exists
some limitation that requires careful treatment for further improvement.

8.4. Further Improvement Using One‐Class Classifier

The objective of the current work is not to design a robust classifier that can achieve better tremor
detection performance than the state‐of‐the‐art classifiers. Instead, we attempt to investigate the possibi-
lities of using one single station's data to predict tremor and identify the optimal feature subset for the
detection. Given that a sophisticated classifier may compensate the weakness of features, we used a very
simple classification method, the k‐NN, in the present study. However, we found that the multiclass
classification approach applied in this study is not robust in practical in terms of real‐time tremor mon-
itoring using continuous data. The variety of earthquakes and noise‐like signals (e.g., far‐field earth-
quakes, landslides, and typhoons) that occurred frequently but are not considered in the current
training data may produce significant classification errors in the current three‐class classification frame-
work. The trained decision boundary could be also biased due to the undersampled data in a
multiclass classification.

To improve the generalization performance, one possible approach is to have tremors trained in a one‐class
machine learning model. One‐class classification trains a data description to model a target class. Samples
that are accepted and rejected by the description are considered as targets and nontargets, respectively.
The advantages of one‐class classification are as follows: (1) There is no need to collect other classes' samples.
(2) It is computationally cheaper because only the target samples (i.e., tremors) are required in the training
stage. One‐class classification can be performed by either a density or a boundary method. Examples for the
former and the later are Gaussian mixture model and support vector domain description, respectively. In the
future, the classification performance using one‐class classifiers can be further explored, if the aim is at
tremor detection.

8.5. Further Improvement Using RFs

In the current study, the tasks of (1) feature selection and (2) three‐class classification are performed sepa-
rately. Fisher's class separability criterion is applied for feature selection, while one‐against‐one strategy is
applied to solve the three‐class classification problem. Although the process chain works well, the classifica-
tion accuracy could be improved by better feature selection with higher robustness and versatility. There is
one algorithm which, by construction, performs feature selection and classification in one single step and
has demonstrated to be highly relevant and efficient for multiclasses problem: RF (e.g., Hibert et al.,
2017). The success of RF is attributed to its unique capabilities of inherently performing selection of the best
features in multiclass classification problem. More importantly, RF also provides a direct measure of how
important the feature is during the classification process. RF, by not removing features, ensures a higher
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robustness and versatility, as some features which are relevant for a case will not be the same in a different
one (different station and different time period). It is also worthy to explore the usage of this algorithm in
future work.

9. Conclusion

In places where tremor signals are relatively weak and short, the powerful tools to segregate them from
Noise are demanded. The challenge in identifying Tremor in Taiwan serves as a good example of further
improvement using machine learning approach. Recent observation from the seismic stations deployed
on the top of the tremor zone allows us to document the tremor events recorded at the closest distance.
To identify Tremor, manual checks of multistations waveforms were necessary to exclude loud noise and
swarms of small or regional earthquakes. This led to time‐consuming and subjective determinations of tre-
mor catalogs in Taiwan. The advances of machine learning approaches enable an automatic search for pat-
terns in large data sets. In this study, we obtained a 9‐month tremor catalog using a temporary array on the
top of mountain and evaluated the performance of the simple supervised classifier k‐NN. The k‐NN classifies
objects by a majority of votes to a training class that is defined by the distance to the training examples.

Using three‐component broadband seismograms from 1 January to 16 September 2016, three classes of
events were labeled: M ≥ 2 Earthquakes, Tremor, and Noise. Based on the computation of 27 seismic fea-
tures from three different stations and components, we used 612 training events in each class to evaluate
the performance of the k‐NN classifier. We found that the CR increased from 68.8–93.7% to 86.6–98.8%
when the features were selected by F score. Using a new data set composed of 261 events in each class,
the classification accuracy remained high from 76.6% to 90%. The efficient features allowing for a better
classification between tremor and noise are suggested to be (1) maximum amplitude, number of peaks,
and energy of the 2‐ to 8‐Hz‐filtered signals and (2) number of peaks in the curve showing the temporal
evolution of the DFTs median. Our work validates the performance of a single station k‐NN classifier that
the classification accuracy can be improved to 98.8% at the station closest to Tremor, with features selected
by F score based on the preselected Tremor, Earthquake, and Noise events. However, once we apply the
single station approach to the catalog from different time period, the CR dramatically decreases to 53.2%.
This suggests that to make this single‐station classifier applicable for future tremor monitoring systems,
further improvement in increasing the number of classes in the training data and considering time instabil-
ity of Noise is needed.
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