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Abstract 

Shikoku island, southwestern Japan lies in the western Nankai Trough and showcases along-strike segmentation 
of slow earthquake behavior. Whether the spatial variation of tremor behavior reflects the regional differences in 
structure/source properties and how much such differences can be recognized by the seismic signals themselves are 
two questions addressed in this paper. Taking advantage of advanced methods in recognizing and classifying signals 
using machine learning approaches, we attempt to answer them by conducting signal classification experiments 
in Shikoku. Based on the tremor catalog from 1 June 2014 to 31 March 2015, the tremors recorded in four different 
areas were treated as different classes and segmented into 60-s-long signals. The number of tremors in four different 
areas (A to D, from west  to east) reached 15,000, 31,000, 10,000, and 16,000, respectively. To efficiently distinguish 
between tremors from different areas, we applied a k-nearest neighbor (k-NN) classifier with Fisher’s class separability 
criteria to select the optimal feature subset. The resulting classification performance reached more than 90% at all 12 
stations. We further designed a triangle test to select the features that can better represent the differences in source 
properties between areas. We found that the most efficient features were associated with (1) the number of peaks in 
the temporal evolution of discrete Fourier transforms and (2) the energy distribution in the autocorrelation function 
(ACF). To match the difference in behavior revealed by the ACF, the size of the tremor zone, which mainly controls 
how long the seismic energy lasts in a tremor episode, was determined to be largest in Area B and smallest in Area C. 
The heterogeneity of the asperities in a tremor zone, which may control how spiky the tremor signals developed  over 
time, was determined to be strong in Areas B and C. Together with previously documented variations in slow earth‑
quake behavior in the same area, we finally propose a conceptual model that provides a better understanding of the 
regional differences in the tremor source properties in Shikoku, Japan.
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Graphical Abstract

Introduction
Deep low-frequency tremor characterized by dominant 
frequencies of ~ 2–10  Hz is a member of slow earth-
quake family. With the lack of emergent P and S seismic 
wave arrivals, long-lasting but small-amplitude wave-
form characters, they have been recognized as repre-
senting slow slip processes below the seismogenic zone. 
The deep low-frequency tremors have been discovered 
in a variety of tectonic settings, including subduction 
zones, transform faults, and mountain belts (Obara 2002; 
Nadeau and Dolenc 2005; Ide et al. 2007; Kao et al. 2007; 
Shelly et  al. 2006; Wech and Creager 2008; Nadeau and 
Guilhem 2009; Ide 2012; Wech et al. 2012; Chuang et al. 
2014; Chen et al. 2018). Due to the strong spatiotempo-
ral correlation between tremors and geodetically inferred 
slow slip events (e.g., Rogers and Dragert 2003; Obara 
and Hirose 2006; Brudzinski and Allen 2007; Obara and 
Sekine 2009), tremors are regarded as a seismic signature 
of aseismic slip. The observation of tremors, therefore, 
provides crucial information about the strain accumu-
lation at greater depths, especially in mountainous and 
offshore areas where ground-based geodetic data are not 
available or do not have sufficiently high resolution.

The tremors in Shikoku, southwestern Japan, exhibit 
remarkable diversity in their slow slip phenomena in 
terms of spatial characteristics, radiated energy, dura-
tion, and tremor migration patterns (Ide 2008, 2010; 

Obara 2010; Obara et  al. 2010, 2011; Idehara et  al. 
2014; Annoura et al. 2016; Kano et al. 2018; Hirose and 
Kimura 2020; Supino et  al. 2021). Such observations 
provide a great opportunity to establish the along-strike 
variation in physical properties on the subducting plate 
interface. Obara (2010) separated the tremors in Shi-
koku into western, central, and eastern segments (black 
dashed line in Fig.  1a) based on their different spatial 
distributions, slip rates, and migration patterns. Unlike 
the strong association with tidal stress found in eastern 
Shikoku, the tremors in western Shikoku were not cor-
related with tides (Nakata et al. 2008). The total seismic 
energy of the tremors was found to be larger in western 
Shikoku compared with eastern Shikoku (Annoura et al. 
2016). The spatiotemporal variation in episodic tremor 
and slip (ETS) also divides Shikoku into three segments 
(Hirose and Obara 2005; Sekine et  al. 2010; Hirose and 
Kimura 2020), suggesting a strong regional difference in 
mechanical properties. Based on precisely located ETS of 
tremors, the combination of central and western Shikoku 
first demarcated by Obara (2010) was further divided 
into another three segments by Kano et al. (2018) (yellow 
dashed line in Fig. 1a). In total, four segments in Shikoku 
are considered in this study, as shown by the red line in 
Fig. 1a.

Two key questions were of interest in this study: Does 
the spatial variation of tremor behavior reflect regional 
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Fig. 1  a Distribution of stations and tremor events catalogued in this study. Blue, light coral, light green, and dark green dots represent the 
labeled tremor events in the three sub-areas of western Shikoku (western, central, and eastern sub-areas) and eastern Shikoku, respectively (Areas 
A to D). The colored lines indicate different divisions: Obara (2010) in black, Kano et al. (2018) in yellow, and this study in red. b The number of 
tremor event along the longitude. c The depth distribution of tremor events along the longitude. Events belong to four different areas are denoted 
by different colors
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differences in structure and source property? To what 
extent can such differences be recognized by the seismic 
signals themselves? Through advanced methods of rec-
ognizing and classifying signals using machine learning 
approaches, we attempted to answer these questions by 
conducting signal classification experiments in Shikoku. 
We first demonstrated the relevant regional characteris-
tics using a tremor catalog published by Annoura et  al. 
(2016). By evaluating their classification performance 
using a supervised classifier, k-nearest neighbor (k-NN), 
we explored the seismic features that allow us to discrim-
inate one subarea from another. We also design a triangle 
test for features extraction for a better presentation of the 
differences in source properties between areas. The most 
efficient features discovered here are likely associated 
with the heterogeneity of the asperities in a tremor zone 
and the size of tremor zone. Together with previously 
documented variations in slow earthquake behavior in 
the same area, we finally proposed a conceptual model 
that provides a better understanding of the regional dif-
ferences in the tremor sources of Shikoku.

Data labeling and classifier
Using the tremor catalog published by Annoura et  al. 
(2016), we selected 878 tremor events that featured 
continuous seismic waveforms from 15 Hi-net stations 
(black and open triangles in Fig.  1a) (e.g., Okada et  al. 
2004; Obara et al. 2005). Following Kano et al. (2018), the 
tremors in Shikoku were classified into four areas from A 
to D, as shown by the differently colored dots in Fig. 1a. 
During the study period from 1 June 2014 to 31 March 
2015, the number of tremor events in A to D were 289, 
299, 106, and 184, corresponding to total durations of 
2220 s, 2145 s, 1646 s, and 1755 s, respectively. The num-
ber of events and depth ranges are shown in Fig.  1b, c. 
The events were distributed from depths of 27.5  km to 
45.0  km, and a tremor gap appeared between Areas C 
and D. By visual inspection, 12 stations showing clear 
tremor signals were selected, as listed in Table 1 denoted 
by black triangles in Fig. 1a).

Estimates of kernel density for event duration and root 
mean square (RMS) amplitude are shown in Fig.  2. We 

found that Areas C and D tended to have shorter dura-
tion tremors, whereas Areas A and B had longer duration 
tremors (Fig.  2a). Regarding RMS amplitude, however, 
Areas A and D appeared to show larger amplitudes of 
tremors compared with Areas B and C. In other words, 
Area A tended to have the largest number of long-lasting 
tremors with relatively large amplitude; Area B is also 
characterized by more long lasting tremors, but with the 
smallest amplitudes.

To build the training and test data sets in the follow-
ing analyses, the seismic data were segregated into 60-s 
segments and examined visually. The total number of 
60-s-long tremors in each area is given in Table 1. Trem-
ors in the four areas were treated as different classes. 
Each tremor event class was split into training (70%) and 
testing (30%) datasets. This hold-out method allowed us 
to find an efficient model parameter and hyper-param-
eter for better generalization performance. We used a 
simple classifier, k-NN (k-nearest neighbor), that reflects 
the classification capability of the seismic feature and is 
often used as a benchmark for further complex classi-
fiers. The nearest neighbors of a given test datum are 
defined in terms of the standard Euclidean distance 
(Mitchell 1997). The k-NN classifier involves a simple and 
non-parametric approach, which is easy to implement for 
multi-class problems and no assumptions are needed. It 

Table 1  Four subareas in the Shikoku region (A to D)

70% of the labeled data were for training; 30% were for testing

Area Stations used in this study Total number 
of labeled 
data

A N.MISH, N.IKTH, N.UWAH 15,000

B N.OOZH, N.TBEH, N.KWBH 31,000

C N.TBRH, N.SJOH, N.GHKH 10,000

D N.IKWH, N.SADH, N.SINH 16,000

Fig. 2  The kernel density of a event duration and b RMS amplitude. 
The red dashed line indicates the longest duration of 3600 s
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is a memory-based approach that can adapt new training 
data and is thus useful for real-time applications. The k-
NN classification can be implemented by (1) preparing 
the N-dimensional data point in the training set for the 
M different classes (2) calculating the standard Euclidean 
distance between a test data point to the k nearest train-
ing data point that were previously labeled into M classes 
(3) deciding which class this test data point belongs to 
based on the majority of the neighbors. The only free 
parameter is k, which is an odd number. The sensitiv-
ity test on six binary models shows a general trend of 
decreasing model accuracy with increasing k, while the 
maximum accuracy occurs at k = 5. Therefore the k is set 
as 5 in the present study.

The performance of the classifier was evaluated using 
leave-one-out cross validation (LOO) (Efron and Tib-
shirani 1993). In the training stage, LOO uses a single 
observation from a given data set as the test data, and the 
remaining observations are used as the training data. The 
classification rate (CR) is obtained when each observa-
tion in the data set has been treated as the test data.

Seismic features
The signal features were chosen based on the seismic sig-
natures commonly exploited for event classification. To 
train this model, 29 seismic features (Table 2) were com-
puted based on the characteristics of the temporal wave-
forms (first family), spectral content (second family), and 
energy concentration of the frequency and time (third 
family). Twenty-seven of the features were the same as 
those Liu et al. (2019) selected for discriminating tremors 
from local earthquake and noise, which mainly referred 
to Provost et  al. (2016) and Hibert et  al. (2017) with 
regard to the features used for the signal classification of 
rockfalls, earthquakes, and noise.

By analyzing each 60-s labeled datapoint, we obtained 
an N × 29 feature matrix (N representing the event num-
ber). The 29 features belonged to three separate families, 
their expressions and descriptions are shown in Table 2 
(more details can be seen in the supplementary material 
(Additional file 1: Figs. S1–4). In the 1st family we con-
sidered the amplitude, skewness, kurtosis, and autocor-
relation function of the waveforms. In the 2nd family we 
focused on spectral characteristics including maximum 
amplitude, number of peaks, and the total energy, and 
kurtosis of the signals. In the 3rd family we computed the 
energy concentration in frequency and time.

To evaluate the classification performance of the seis-
mic features, two approaches were used for feature 
extraction. Sequential forward selection (SFS), which 
aims at selecting a subset of features that achieves the 
highest classification accuracy, was conducted first. 
To reduce feature dimensions and select the most 

representative features for each area, evaluating the clas-
sification performance for an individual feature was also 
needed. Fisher’s class separability method (Fang et  al. 
2015; Liu et al. 2017), which computes the ratio of inter-
class scatter and intraclass scatter, was adopted for this 
purpose. This ratio is referred as Fisher score and abbre-
viated to F-score hereafter. In this study, an F-score 
higher than 0.2 was designated as representing strong 
separability between classes. This determined the cor-
respondence between the p-value (a commonly used 
statistical value that describes how likely your data have 
occurred by random chance) and F-score for all tests in 
this study. As a p value > 0.05 indicates strong evidence 
for the null hypothesis, an F-score > 0.2 was found to cor-
respond with a p-value < 0.05.

Experimental design for feature extraction
For the purpose of signal discrimination, models based 
on the k-NN classifier were trained to distinguish the 
tremors from different areas of Shikoku (Areas A to D). 
To identify the efficient features that better represented 
the properties of the tremors in each area, we adopted 
binary classification and developed a set of experiments. 
The four classes of tremors belonging to Areas A to D are 
represented by TA , TB , TC , and TD as the source effect, 
whereas the three stations located in each subarea are 
abbreviated as SA , SB , SC , and SD as the site effect. The 
expression of TX-SY on the other hand, shows the consid-
eration of path effect (X and Y = A or B or C or D).

As shown in Fig.  3a, Experiment-1 considers the sig-
nals from the source to the stations in the same area, as 
denoted by TA-SA, TB-SB, TC-SC, and TD-SD. There exists 
six combination of two-class pairs (tests): TA-SA vs TB-SB, 
TA-SA vs TC-SC, TA-SA vs TD-SD, TB-SB vs TC-SC, TB-SB vs 
TD-SD, and TC-SC vs TD-SD (Tests 1–6 in Table 3). Experi-
ment-2 considered the signals from the sources in TA 
to various stations SA , SB , SC , and SD , aiming to identify 
the differences between TA-SA, TA-SB, TA-SC, and TA-SD 
(blue dashed lines in Fig. 3b). Thus there were three tests 
in Experiment-2, TA-SA vs TA-SB, TA-SA vs TA-SC, and 
TA-SA vs TA-SD, which are listed as Tests 7–9 in Table 3. 
Experiment-3 to Experiment-5 followed the same proto-
col as Experiment-2 but with the source areas set as TB

,TC , and TD , respectively, with the corresponding descrip-
tions listed in Table 3 (Tests 10–18).

Note that comparing with NS and vertical compo-
nents, the waveforms in EW component reveal slightly 
better classification performance in our test when 100 
tremor events were randomly selected and the 29 fea-
tures (Table 2) were computed for Test 1 in Experiments 
1 (83.7%, 80.2%, and 77.8% for EW, NS, and Z compo-
nents, respectively). Therefore, we measured  the classi-
fication performance using EW component of the data 
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from each station in the following analysis. The classifica-
tion performance was first determined using SFS, which 
adds features from a dataset sequentially, to minimize the 
number of overall features in a subset (Whitney 1971). 
This was done by predefining the number of features N 
(N < 29) at each timestep and evaluating the classification 

performance in each test. To meet the optimal perfor-
mance requirements, the maximum classification rate 
for each test is obtained and shown in Table 3. The SFS 
for the 18 tests produced a classification rate (CR) of 
89.3% to 99.5% (Fig. 4 and Table 3), showing the effective-
ness of the proposed architecture and feature choices. 

Table 2  Computed seismic features in this study

ID Expression Description

1st family

1. EnvMean/Max f1 = mean (Env)
max(Env)

Ratio of the mean over the max of the envelope signal

2. EnvMed/Max f2 = median (Env)
max(Env)

Ratio of the median over the max of the envelope signal

3. EnvMax f3 = max(Env) Maximum envelope amplitude

4. EnvMaxTime f4 = arg max(Env) Time of the maximum envelope amplitude

5. RawKurt f5 = ( µRaw
σRaw

)
4 Kurtosis of the raw signal

6. EnvKurt f6 = ( µEnv
σEnv

)
4 Kurtosis of the envelope

7. RawSkew f7 = ( µRaw
σRaw

)
3 Skewness of the raw signal

8. EnvSkew f8 = ( µEnv
σEnv

)
3 Skewness of the envelope

9.ACF1/3 f9 = 
∫ 3/T
1 C(τ )dτ Energy in the first third of the autocorrelation function

10. ACF2/3 f10 = 
∫

T
T

3

C(τ )dτ Energy in the remaining part of the autocorrelation function

11. ACF1/3/ACF2/3 f11 = f9
f10

Ratio of the above two

2nd family

12. Max BP2−8Hz f12 = max(BP2−8Hz) Maximum amplitude of the 2–8 Hz filtered signal

13. NPks BP2−8Hz f13 = length(findpeaks(EnvBP)) Number of peaks in the envelope filtered by 2–8 Hz

14. BP0.1−1Hz f14 = 
∫ T
0BP0.1−1Hz(t)dt Energy of the signal filtered by 0.1–1 Hz

15. BP2−8Hz f15 = 
∫ T
0BP2−8Hz(t)dt Energy of the signal filtered by 2–8 Hz

16. BP5−20Hz f16 = 
∫ T
0BP5−20Hz(t)dt Energy of the signal filtered by 5–20 Hz

17. Kurt BP0.1−1Hz f17 = ( µBP1
σBP1

)
4 Kurtosis of the signal filtered by 0.1–1 Hz

18. Kurt BP2−8Hz f18 = ( µBP2
σBP2

)
4 Kurtosis of the signal filtered by 2–8 Hz

19. Kurt BP5−20Hz f19 = ( µBP3
σBP3

)
4 Kurtosis of the signal filtered by 5–20 Hz

3rd family

20. KurtDFT f20 = Kurtosis( max
t=0...T

[SPEC(t , f )]) Kurtosis of the maximum of all DFT as a function of time

21. DFTmax/mean

f21 = mean(

max
t=0...T

[SPEC(t ,f )]

mean
t=0...T

[SPEC(t ,f )])

Mean ratio between the maximum and the mean of all DFT

22. DFTmax/med

f22 = mean(

max
t=0...T

[SPEC(t ,f )]

median
t=0...T

[SPEC(t ,f )])

Mean ratio between the maximum and the median of all DFT

23. NPks_DFTmax f23 = length(findpeaks( max
t=0...T

[SPEC(t , f )])) Number of peaks in the curve showing the temporal evolution of the DFT max

24. NPks_DFTmean f24 = length(findpeaks(mean
t=0...T

[SPEC(t , f )])) Number of peaks in the curve showing the temporal evolution of the DFT 
mean

25. NPks_DFTmed f25 = length(findpeaks(median
t=0...T

[SPEC(t , f )])) Number of peaks in the curve showing the temporal evolution of the DFT 
median

26. NPks_DFTmax/mean f26 = f23
f24

Ratio between #23 and #24

27. NPk_DFTmax/med f27 = f23
f25

Ratio between #23 and #25

28. Sum BP2−8Hz/BP5−20Hz

f28 = 

sum( [STFT
2≤f≤8

(t ,f )])

sum( [STFT
5≤f≤20

(t ,f )])

Ratio between the sum of energy in 2–8 Hz and the sum of energy in 5–20 Hz

29. Sum BP2−8Hz/BP5−50Hz

f29 = 

sum( [STFT
5≤f≤20

(t ,f )])

sum( [STFT
5<f≤50

(t ,f )])

Ratio between the sum of energy in 5–20 Hz and higher than 5 Hz
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The corresponding number of features optimized for 
the performance of the model can be also seen in Fig. 4 
(number above each circle). Out of the 29 features, 14 

were found to be necessary to improve the CR. They are 
EnvMax,ACF1/3,ACF2/3 , and ACF1/3/ACF2/3 in the 1st 
family, Max BP2−8Hz , NPksBP2−8Hz,BP0.1−1Hz,BP2−8Hz

,BP5−20Hz , KurtBP2−8Hz , and Kurt BP5−20Hz in the 2nd 
family, and KurtDFT, NPks_DFTmean, and NPks_DFT-
med in the 3rd family. Note that BP5−20Hz was found to 
be useful in all 18 tests, whereas BP0.1−1Hz and NPks_
DFTmean were useful in 17 tests. At the first glance, the 
useful features separating tremors from different areas 
are associated with the autocorrelation function, band-
pass filtered energy, and temporal evolution of DFT.

As shown in Table 3, the CR using all features are gen-
erally lower that those using SFS. Experiment-1 reveals 
that the CR was highest for TA-SA vs TC-SC (97.6% on 
SFS and 95.2% on all features) and lowest for TB-SB vs TD-
SD (89.3% on SFS and 84.1% on all features). In Experi-
ments-2–5, the classification rate was highest for TC-SC 
vs TC-SA (99.5% on SFS and 98.3% on all features) and 
lowest for TD-SD vs TD-SB (89.9% on SFS and 81.8% on all 
features). This suggests that the tremor signals between 
Areas A and C are more distinguishable compared with 
those from Areas B and D. To extract the features that are 
most representative of the tremor source in each area, 
evaluating the performance of individual features is nec-
essary. The SFS-selected feature subsets were thus further 
used in second-step feature selection. By ranking indi-
vidual features using the Fisher score, the highest F-score 
and the corresponding classification rate is shown as 
vertical bars in Fig.  5. Compared with the classification 

Fig. 3  Experiments of two-class classification in this study corresponding to Table 3. a Experiment-1: The experiment involved six tests that 
compared the signals from the source to the stations at the same area. b Experiments-2–5: These experiments considered sources from one area 
to stations in other areas. In total, there were twelve tests considered in Experiments-2–5. TA , TB , TC , and TD represents the four classes of tremors in 
Areas A to D, while SA , SB , SC , and SD represents the stations in each area. The names of stations are listed in Table 1

Table 3  Description of different two-class tests in the 
experiments

Experiment ID Test ID Description CR on SFS (%) CR on all 
features 
(%)

1 1 TA-SA vs TB-SB 91.3 84.3

2 TA-SA vs TC-SC 97.6 95.2

3 TA-SA vs TD-SD 94.2 88.4

4 TB-SB vs TC-SC 94.6 88.6

5 TB-SB vs TD-SD 89.3 84.1

6 TC-SC vs TD-SD 95.1 89.1

2 7 TA-SA vs TA-SB 92.7 87.5

8 TA-SA vs TA-SC 97.8 95.5

9 TA-SA vs TA-SD 92.3 85.6

3 10 TB-SB vs TB-SA 94.4 89.7

11 TB-SB vs TB-SC 90.0 80.4

12 TB-SB vs TB-SD 90.4 82.7

4 13 TC-SC vs TC-SA 99.5 98.3

14 TC-SC vs TC-SB 96.6 93.4

15 TC-SC vs TC-SD 95.7 89.8

5 16 TD-SD vs TD-SA 96.9 91.5

17 TD-SD vs TD-SB 89.9 81.8

18 TD-SD vs TD-SC 93.3 84.5
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Fig. 4  The highest classification rate using SFS for various tests. The number above each circle denotes the total number of features in each subset 
for each test that met the optimum classification rate

Fig. 5  Single feature selected by 1st Fisher score and the corresponding classification rate on different tests (vertical bar) and SFS-based 
classification rate (square). The bars in brown are the test under Fisher criterion on experiment 1; blue on experiment 2; light coral on experiment 
3; light green on experiment 4; dark green on experiment 5. The sequences of tests on each experiment are in Table 1. The bars in black are the 
classifications with low p-values and Fisher scores. The number above each circle denotes the total number of features in each subset for each test 
that met the optimum classification rate
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rate obtained using SFS (squares in Fig. 5), we found that 
the highest F-score in each test was highly correlated 
with the CR based on a top-ranking feature. As shown in 
Fig.  5, when the SFS-based CR is high, the top-ranking 
F-score is also high. A low F-score for a single feature, 
however, did not necessary lead to a low CR. This can 
be illustrated by Test 18, where a top-ranking feature in 
isolation yielded a low F-score so as CR (black bar), but 
the CR obtained using multiple features reached 93.3% 
on SFS (square). Note that the purpose of this study is to 
design a classifier model for discriminating the tremors 
from different areas, and to explore the meaning behind 
the selected features. Therefore, the individual perfor-
mance of the features carried out by F-score is adopted in 
the following analysis.

Triangle test to isolate the source effect
We designed a triangle test to determine the features 
that could better represent the differences in the source 
property of the tremors. Note that for each test we are 
able to select the efficient features using the criterion 

of an F-score greater than 0.2. As the example shown 
in Fig. 6a, the efficient features in Test 1 represent the 
difference between SA and SB (source effect), between 
TA and TB (site effect), and between the path from TA 
to SA and that from TB to SB (path effect). To isolate the 
source effect, we next considered Test 7 (Fig. 6c), which 
only involved the difference in the site effect (SA vs SB) 
and path effect (TA to SA vs TA to SB). As denoted by 
the tabular form of Fig.  6b, the features that allow us 
to distinguish TA-SA from TB-SB are #24, #25, and #13 
(Test 1 in Fig.  6a), whereas the feature distinguishing 
TA-SA and TA-SB is #24 (Test 7 in Fig. 6c). When Text 
10 is also considered, the features distinguishing TB-SA 
and TB-SB are found to be #25, #24, and #16 (Test 10 in 
Fig.  6e  and f ). Note that the common feature for Test 
1 and Test 7 is #24, which represents a differential site 
effect. Subtracting the features from Test 1 and Test 7 
cancels out the site effect and minimizes the path effect 
of TA-SA vs TB-SB and TA-SA vs TA-SB. As listed in tabu-
lar form of between Fig. 6b, the candidate features that 

Fig. 6  Explanation of the triangle test using Tests 1, 7, and 10. a Test 1 in Experiment-1: the features selected using the F-score were #24, #25, and 
#13, which represent differences of source, path, and site effects for the two classes TA-SA vs TB-SB. b The list of common and different features for 
Test 1 and Test 7. c Test 7 in Experiment-2: the feature selected using the F-score was #24, which represents differences of path and site effects for 
the two classes TA-SA vs TA-SB. d The list of common and different features for Test 7 and Test 10. e Test 10 in Experiment-2: the features selected 
using the F-score were #25, #24, and #26, which represent differences of source, path, and site effects for the two classes TB-SA vs TB-SB. f The list of 
common and different features for Test 1 and Test 10
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represent the different source effects of SA and SB are 
#13 and #25.

Similarly, subtracting the features from Test 1 and 
Test 10 (tabular form in Fig.  6f ) leads to the same 
source effect discrimination. As Test 10 (Fig.  6e) con-
tains the difference in site effects (SA vs SB) and the dif-
ference in path effects (TB to SA vs TB to SB), subtracting 
the features from Test 1 and Test 10 isolates the differ-
ence in source effect, #13. The common feature for Test 
1 vs Test 7 and Test 1 vs Test 10 is feature #13 (high-
lighted in red in Figures b, d, and f ), which is therefore 
considered responsible for the differences between TA 
to TB.

Such a triangle test that contains the three two-class 
tests in Table 3 generates a list of features that may con-
tribute to the source differences. The binary classifica-
tions of source comparison of TA vs TB, TA vs TC, TA vs 
TD, TB vs TC, TB vs TD, and TC vs TD are illustrated in 
Fig.  7a–f, respectively. The resulting seven features that 
represent the source differences are listed in Table  4. 
How much these features show the regional difference 
in tremor properties will be discussed in the following 
section.

Selected features for tremor discrimination 
between areas
Using the triangle tests, we were able to determine the 
most representative features that allow us to discrimi-
nate between tremors from different areas. For example, 
as listed in Table  4, to distinguish the tremors in Area 
A (TA) from those in Area B (TB), the key feature is #13 
(NPks BP2−8Hz , the number of peaks in the 2–8  Hz fil-
tered envelope). To distinguish TA from TC, however, 
the key features are #11 ( ACF1/3/ACF2/3 , ratio of energy 
in the first third of the ACF to that in the remaining 
part) and #24 (NPks_DFTmean, number of peaks in the 
temporal evolution of the DFT mean). In total, there 
exist seven features that are useful for separating trem-
ors of one area from another: ACF1/3 , ACF2/3 , ACF1/3
/ACF2/3 , NPks BP2−8Hz , BP5−20Hz , NPks_DFTmean, and 
NPks_DFTmed.

The feature histograms in Fig. 8 can be used to visual-
ize the frequency distribution of the normalized feature 
values for different areas. Note that the features ACF1/3 , 
ACF2/3 , and ACF1/3/ACF2/3 were computed in the time 
domain. As shown in Table  2, ACF1/3 represents the 
energy in the first third of the ACF, ACF2/3 represents 
the energy in the remaining part of the ACF, whereas 
ACF1/3/ACF2/3 is the ratio of the above two. As shown in 

Fig. 8a–c, Tremors in Areas C and D are characterized by 
smaller ACF1/3 and ACF2/3 but greater ACF1/3/ACF2/3 . 
The autocorrelation computes the similarity between a 
time series and a delayed version of itself. Here, the ACF 
was processed using a 60-s-long signal with a 0.6-s shift, 
which leads to 100 measures of time lapse. An example of 
the ACF can be seen in Additional file 1: Fig. S5a where 
we randomly selected 1000 events and then applied the 
ACF. Their averaged value is shown in Additional file 1: 
Fig. S5b, where tremors in Areas A and B have greater 
values not only in the first third of the ACF but also in the 
remaining two thirds, which is consistent with the com-
parison in Fig. 8a, b.

Features NPks BP2−8Hz and BP5−20Hz were computed 
in the frequency domain, as NPks BP2−8Hz counted the 
number of peaks in the 2–8  Hz filtered envelope, and 
BP5−20Hz computed the energy of the 5–20 Hz filtered 
waveforms. As shown in Fig.  8d, e, their difference 
between areas was less significant when comparing 
with three features associated with autocorrelation 
function as discussed earlier. An example of the NPks 
BP2−8Hz feature description can be seen in Additional 
file  1: Figs. S6a, b, where the number of peaks in the 
envelope was counted when a given sample at t = i had 
a higher amplitude than the neighboring samples at 
t = i − 1 and t = i + 1. Note that the filtered envelopes 
reveal high similarity between different areas, whereas 
the number of peaks indicate very minor differences. 
The spectra in Additional file  1: Fig. S6c, d, however, 
show that the total energy of the 5–20  Hz signals was 
largest in Area C. Together with the larger amplitudes 
for the 2–8  Hz envelope seen in Additional file  1: Fig. 
S5b, Area C appears to have been enriched by high fre-
quency energy (> 2 Hz).

Features NPks_DFTmean and NPks_DFTmed were 
computed in the time–frequency domain. NPks_DFT-
mean represents the number of peaks in the temporal 
evolution of the DFT mean values and NPks_DFTmed 
for the DFT median values. As the DFT transforms a 
time series into frequencies and corresponding ampli-
tudes, the DFT was sorted by amplitude into a finite 
time interval to obtain the mean and median ampli-
tude. Additional file 1: Fig. S7 establishes the temporal 
pattern of the DFT in each area and the corresponding 
peak count. Note that Area C revealed the largest num-
ber of peaks in both NPks_DFTmean and NPks_DFT-
med, whereas for NPks_DFTmed, Area C also showed 
the largest amplitude. If the energy concentration is 
confined in a narrow frequency range, the median/
mean amplitude retrieved from the time–frequency 
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Fig. 7  Schematic diagram of various triangle tests that discriminate between the source effect of different areas: a TA and TB; b TA and TC; c TA and 
TD; d TB and TC; e TB and TD; and f TC and TD. Note that the number in the filled circle corresponds to the Experiment ID
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plot would be similar over time. On the other hand, if 
the frequency concentration changes rapidly in time, 
the median/mean amplitude would be highly variable, 
leading to larger number of peaks in temporal evolu-
tion of DFTs. This implies that higher temporal fluc-
tuation in main frequency content is needed, to explain 
the larger values of NPks_DFTmean and NPks_DFT-
med in the tremor signals from TC. TA however, is 

Table 4  Features responsible for the source differences  using 
various triangle tests (feature number corresponding to ID 
number in Table 2)

Fig. 8  Distribution of feature space showing the discrimination between areas using the selected features listed in Table 4: a ACF1/3 , b ACF2/3 , c 
ACF1/3/ACF2/3 , d NPks BP2−8Hz , e BP5−20Hz , f NPks_DFTmean, g NPks_DFTmed. Each normalized feature was obtained by dividing the feature value 
by the difference between the maximum and minimum value
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characterized by smallest number of peaks in the both 
features, suggesting very minor variation in frequency 
content. To conclude, when the features from different 
areas are normalized and compared (Fig.  8), ACF2/3 , 
ACF1/3/ACF2/3 , NPks_DFTmean, and NPks_DFTmed 
are found to be more significant and will be used to 
obtain the new segmentation model in section "Source 
properties from seismic features".

Discussion
Slow earthquake phenomena
Shikoku island in the western Nankai Trough showcases 
a diversity of slow earthquake behavior. The long-term 
SSEs with durations of approximately 1 year are located 
on the updip side of Area A (the Bungo Channel), which 
is characterized by large magnitude earthquakes (Mw 
7.0–7.1) and longer recurrence intervals of approxi-
mately 6 years (Hirose and Obara 2010; Ozawa et  al. 
2013). Long-term SSEs of similar duration are also found 
at the updip of Area B and Area C. They have smaller 
amounts of slip with the magnitude equivalence of Mw 
6.0–6.3 (Takagi et al. 2016). A comparison of long-term 
SSE behavior between areas is listed in the “ID-1” row 
of Table 5. Short-term SSEs with a duration of approxi-
mately one week, on the other hand, are commonly 
observed in both Areas A and B with a similar recurrence 
time of 6 months. In Areas C and D, where short-term 
SSEs are less active, the recurrence interval appears to 

be shorter (approximately three months) (Obara 2010; 
Hirose et al. 2010), as shown in row ID-2 in Table 5.

The spatial distribution of tremor events reveals clear 
segmentation bounded by abrupt changes in tremor 
activity. ETS is frequently observed across Areas A and B 
but not clearly in Areas C and D (Obara 2010). The trem-
ors in Areas A and B are continuously distributed in the 
map in Fig. 1, and they were found to be largely modu-
lated by the occurrence of SSEs (Takagi et al. 2016). The 
depth distribution of tremors approximated by the along-
dip width in Annoura et al. (2016), however, reveals dif-
ferent characteristics, being more diffuse in Area A but 
narrower in Area B (Fig. 1c). Continuing to Area C, the 
tremors tend to be fewer and shorter in spatial extent 
along the strike, suggesting a clear separation from Area 
B. Further east, a discontinuity of the tremor zone occurs 
between Areas C and D. Note that the slip rate inferred 
from the tremor activity in Area C (~ 3.3  cm/yr) shows 
a strong contrast with Areas A and B (~ 4.2 cm/yr) and 
Area D (~ 4.9 cm/yr) (Hirose et al. 2010), as listed in row 
ID-3 of Table 5.

The tremor characteristics are also summarized in 
Table  5 (rows ID-4 to ID-7). The tremors in Areas A 
and B are greater in number and exhibit higher radiated 
energy, longer duration, and lower sensitivity to tidal 
stress. On the other hand, Areas C and D show fewer 
active tremors, lower radiated energy, and shorter dura-
tion but higher sensitivity to tidal stress (Obara 2002, 

Table 5  The characteristics of slow earthquake phenomena and regional structure in different areas of Shikoku

ID Description of characters A B C D

1 Equivalent magnitude of long-term SSEs (Hirose et al. 
2010; Takagi et al. 2016)

Mw 7.0–7.1 Mw 6.0–6.3 Mw 6.0–6.3 x

2 Recurrence interval of short-term SSEs (Hirose et al. 
2010)

5.6± 1.7months 2.7± 1.4month 2.8± 1.6month

3 Slip rate inferred from tremors (Hirose et al. 2010) 4.2± 0.6cm/yr 3.3± 0.4 cm/yr 4.9± 0.6 cm/yr

4 Number of tremors (Obara 2010; Kano et al. 2018) Large Largest Small Smallest

5 Radiated energy per tremor (Obara 2010; Kano et al. 
2018)

High Moderate Small Smallest

6 Duration (Fig. 2 of this study) More long-lasted events More short-lasted events

7 Sensitivity to tidal stress (Ide 2010, 2012; Miyazawa 
et al. 2008)

Lowest Low High High

8 Migration speed of tremor (Obara 2010; Kano et al. 
2018)

70% eastward (fast in A, slow in B) 64% westward 67% eastward

9 Strength of patches (Kano et al. 2018) Strong Moderate Weak Weak

10 Density of brittle patches (Ohta and Ide 2017) Dense Moderate Sparse Sparse

11 Viscosity of background region (Ohta and Ide 2017) High Moderate Low Low

12 Qp structure above the slab (Kita and Matsubara 
2015)

High Low High Low

13 Heterogeneity of asperities inferred from NPks_DFT-
mean and NPks_DFTmed in this study

Small Large Large Small

14 Size of tremor zone inferred from duration, ACF2/3 , 
and ACF1/3/ACF2/3 in this study)

Large Largest Smallest Small
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2010; Kano et  al. 2018; Ide 2010, 2012). The migration 
speed of the tremors further illustrates the distinction 
between areas. In Areas A, B, and D, the majority of 
tremors migrated from west to east, whereas in Area C 
the migration pattern was from east to west. As further 
established by Kano et al. (2018), Area A is characterized 
by relatively fast migration speed, greater energy release, 
and a smaller number of tremors compared with Area B 
(row ID-8 in Table 5). The structural heterogeneity (e.g., 
the density and strength of the brittle patches) that has 
led to differences in the condition of stress concentra-
tions has been proposed to explain the above-mentioned 
characteristics (Ando et  al. 2012; Ohta and Ide 2017; 
Kano et  al. 2018). They inferred that the low strength 
of the tremor areas in Areas C and D is the reason why 
small tidal stress perturbations can easily promote their 
rupture. In addition, the tremor patches in Areas C and D 
are sparsely distributed with low viscosity in ductile sur-
roundings, leading to pulse-like, short-lasting moment 
releases (Ohta and Ide 2017). The inferred properties of 
the host environment are listed in rows ID-9 to ID-11 of 
Table 5.

Conditions within the overriding plate
Using an attenuation structure, Kita and Matsubara 
(2016) established the relationship between the charac-
teristics of Qp in the lower crust of the overlying plate 
and the long-term SSE segmentation in Shikoku. High-
Qp zones are located in the crust of the island arc directly 
above the long-term SSE area, mostly in Area A. As 
addressed in Table  5, the lower crust above the slab in 
Area C is characterized by high Qp and high Vp, whereas 
the adjacent Areas B and D show a moderate-to-low Qp, 
low Vp, and low Vs. In Area A to the west, however, mod-
erate-to-high Qp and high Vp are observed in the lower 
crust. Inhomogeneity of the crust in the overlying plate 
is likely a result of orogeny, where crust thickening coin-
cides with low Qp, low Vp, and low Vs. Such heterogene-
ity corresponds to a change in physical properties of the 
rocks in the vicinity of the subduction interface, which 
controls the rheology and hence tremor and SSE activity 
(Kita and Matsubara 2016; Nakajima and Hasegawa 2016; 
Poiata et al. 2021).

The slip deficit rate in the transition zone may also 
reflect the conditions of the ductile background region. 
Using the moment release rate from tremors, the west-
ern (Areas A and B), central (Area C), to eastern Shikoku 
(Area D) exhibit slip deficit rates of 2.6 cm/yr, 3.4 cm/yr, 
and 2.0 cm/yr, respectively (Hirose et al. 2010). The area 
with the smallest slip deficit rate, Area D, corresponds to 
high attenuation, whereas the areas with the fastest slip 
deficit rate (Area C) and moderate slip rates (Areas A 

and B) correspond to low attenuation. Note that ID-12 in 
Table 5 describes the averaged Qp in each area from Kita 
and Matsubara (2016). Most of the Areas A and B, in fact, 
are characterized by high Qp with a low-Qp anomaly at 
the boundary with Area C (Fig. 14 in Kita and Matsubara 
(2016)).

Conceptual model for tremor segmentation
For a given station, the tremor signals reveal a combined 
effect from the source characteristics and the attenuation 
structure above which the tremors occur. Together with 
the collective information from sections  "Slow earth-
quake phenomena" and "Conditions within the overrid-
ing plate", the efficient features identified in this study 
provide a better understanding of the tremor segmen-
tation in Shikoku. To illustrate the source properties in 
each area, we followed the physical model proposed by 
Ando et  al. (2012) that considers tremors as a result of 
cascade ruptures of small velocity-weakening patches 
(asperities) interacting with the velocity strengthen-
ing regions in the surroundings. As proposed by Nakata 
et al. (2011) and Yabe et al. (2015), the greater size of the 
tremor zone may result in longer duration of tremor epi-
sodes, and the higher density of asperities inside the zone 
may lead to greater amplitudes and reduced sensitivity 
to tidal stress. In addition, the higher effective strength 
of individual tremor asperities is likely responsible for the 
greater radiated energy (Kano et al. 2018). We thus used 
the conceptual model in Fig. 9 to illustrate the variety of 
tremor behavior in the along-strike direction.

Here each tremor zone is composed of multiple asperi-
ties, represented by the grey polygons enclosed by the 
dashed circle. The strength of the asperities is repre-
sented by different colors in the polygons. As sum-
marized in Table  5, Area A is characterized by a large 
number of tremors with the highest radiated energy and 
longer lasting events, leading to strong asperities in rela-
tively wide tremor zones (black polygons enclosed by 
large, dashed circles in Fig. 9). Similarly, Area B has the 
largest number of tremors with moderate radiated energy 
and longer lasting tremor episodes, leading to asperi-
ties of moderate strength in relatively wide tremor zones 
(dark grey polygons enclosed by large, dashed circles in 
Fig. 9). Tremors in both Areas A and B were found to last 
longer and be less sensitive to tidal stress and thus can 
be represented by larger tremor zones (dashed circles) 
and more densely distributed asperities in the tremor 
zones (filled polygons), respectively. By contrast, Areas C 
and D are characterized by a smaller number of tremors 
and shorter lasting events with strong sensitivity to tidal 
stress, leading to weaker asperities in a smaller number 
of relatively small tremor zones (dark white polygons 
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enclosed in smaller dashed circles in Fig. 9). As the SSEs 
may reflect the cascaded ruptures of a tremor zone that 
may be facilitated by shorter distance between tremor 
zones, Areas A and B (where the SSEs tend to be larger 
with longer recurrence intervals) are illustrated by the 
closely spaced dashed circles.

Source properties from seismic features
Using machine learning approaches and triangle tests 
designed in this study, the most representative features 
that best distinguish between tremors from different 
areas are found to be ACF2/3 , ACF1/3/ACF2/3 , NPks_
DFTmean, and NPks_DFTmed, as shown by the feature 
performance in Fig. 8.

As previously discussed in section  "Selected features 
for tremor discrimination between areas", the large value 
of NPks_DFTmean and NPks_DFTmed may indicate the 
higher temporal fluctuation in main frequency content 
of the tremor signals. Therefore, with the largest number 
of peaks in both NPks_DFTmean and NPks_DFTmed, 
Area C is likely characterized by higher temporal varia-
tion in the frequency content. In comparison, Area A is 
characterized by the smallest number of peaks in both 
NPks_DFTmean and NPks_DFTmed, suggesting a small 
variation in frequency over time. We argue that these 
two features may indicate a difference in tremor source 
properties. As shown in Fig. 8g, Areas B and C are similar 
in terms of their NPks_DFTmed performance, whereas 
Area A is similar to Area D. It is likely that the tremors 

in Areas B and C have greater heterogeneity of asperities, 
which could be due to the diverse strength and/or size of 
their asperities. In contrast, tremors in Areas A and D are 
composed of more evenly distributed asperities of similar 
strength and/or size. We assumed the strength of asperi-
ties in each area remained similar, but altered asperity 
size to express the stronger heterogeneity of asperities in 
Areas B and C. This is represented in Fig. 9, where there 
is a large variation in the size of polygons in Areas B and 
C, but similar-sized grey polygons occur in Areas A and 
D. In ID-13 of Table  5 we summarize the difference in 
asperity heterogeneity based on the performance of fea-
tures NPks_DFTmean and NPks_DFTmean.

Additionally, ACF1/3 represents the energy in the first 
third of the autocorrelation function (ACF), ACF2/3 
describes the energy in the remaining part of the ACF, 
and ACF1/3/ACF2/3 is the ratio of the above two. Note 
that the ACF can be used to map the decay rate of coda 
waves as an indicator of the heterogeneity of a local 
structure. Wegler and Sens-Schönfelder (2007) showed 
that the decay rate of the ACF is in good agreement with 
attenuation structure. Low attenuation corresponds to 
fast decay of the ACF and thus smaller values for ACF2/3 
and larger values for ACF1/3/ACF2/3 , corresponding to 
the behavior of Areas C and D. Therefore, we suggest 
that in terms of attenuation structure, Areas A and B are 
similar to each other (low attenuation), whereas Areas C 
and D are more alike (high attenuation). This interpre-
tation, however, is not consistent with the attenuation 

Fig. 9  Conceptual model of the tremor properties below Shikoku. The viscosity of the background region was proposed by Ohta and Ide (2017) 
based on the very low-frequency characteristics, where Areas A–B are characterized by high viscosity and densely distributed asperities. The 
strength of the asperities was proposed by Kano et al. (2018), and the size of the tremor zone was derived in this study
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structure inferred by Kita and Matsubara (2016) (their 
Fig. 10). They found that long-term SSEs (Area A) were 
located below the high-Qp zone, and the rapid change 
of Qp corresponds to the segment boundaries of tremor 
and short-term slow slip events. The cross-section of the 
Qp-structure 10 km above the plate interface in Kita and 
Matsubara (2016) reveals that Areas A and C coincide 
with low attenuation, whereas Areas B and D coincide 
with high attenuation (ID-12 in Table 5). To reconcile the 
two models, we argue that the heterogeneity of the source 
itself may contribute to the performance of features 
ACF2/3 and ACF1/3/ACF2/3 . Assuming that stronger 
asperities radiate higher seismic energy and a larger 
tremor zone leads to a longer lasting tremor (Obara 2010; 
Yabe et  al. 2015; Kano et  al. 2018), the large-amplitude 
and/or long-lasting signals traveling through a strongly 
attenuated structure may have a similar ACF decay rate 
compared with small-amplitude and/or short-lasting sig-
nals traveling through a weakly attenuated body.

Compared with Area B, the tremors in Area A are char-
acterized by similarly long duration but higher radiated 
energy, as listed in ID-5 and ID-6 of Table 5. To observe 
similar ACF performance for the tremors in Areas A 
(higher attenuation) and B (low attenuation), the trem-
ors with higher radiated energy in Area A (i.e., stronger 
asperities) need to have shorter duration (i.e., smaller size 
of the tremor zone), so that the signals traveling through 
high-Q structure can produce a similar coda decay rate 
( ACF2/3 ). Similarly, the size of the tremor zones should 
be greater in Area D and smaller in Area C to produce 
similar coda decay rates. The slightly different size of the 
tremor zones is illustrated by the symbols explanation in 
Fig. 9, where the tremor zones in Area B are larger than 
in Area A and the tremor zones in Area D are larger than 
in Area C. In addition, as the size of a tremor zone is pro-
posed to control the duration (Yabe et  al. 2015), longer 
lasting tremors in Areas A and B may be dominated 
by larger tremor zones compared with Areas Cand D. 
Therefore, using ACF2/3 and ACF1/3/ACF2/3 we propose 
that the tremor zone is largest in Area B and smallest in 
Area C. In ID-14 of Table 5, we summarize the difference 
in asperity heterogeneity based on the performance of 
ACF2/3 and ACF1/3/ACF2/3.

Two‑class vs. four‑class classification models
A four-class classification configuration is also proposed 
here, to compare with the current binary models. As the 
four-class model classifies an input feature vector into 
one of the four classes, it usually requires low computa-
tional complexity. For example, a multi-layer neural net-
work (with three output neurons in the output layer) can 
accomplish such task. However, the “feature set” may not 
be the optimum for the four classes, given that the best 

feature subset for classifying two classes (e.g., A and B) 
may not be the optimum for another binary classification 
of classes A and C. Accordingly, we chose the pair-wise 
classification strategy commonly adopted in the machine 
learning community in our four-class classification 
model.

The pairwise classification classifies two classes with a 
set of features that are the best for the two classes’ clas-
sification. Such multi-class classification based on a set 
of binary classifications has been commonly used such as 
a support vector machine (SVM) with One-against-one 
(OAO) method. This is done by extending SVM to multi-
class classification: to classify N classes, you need to train 
N(N-1)/2 SVM classifiers, and then use a majority voting 
strategy to make a final decision (Liu and Chen 2007; Liu 
et al. 2007). Since the OAO method trains a set of binary 
classifiers and for each binary classification the feature 
subset is different (the optimum for that binary classifica-
tion), the overall classification result, i.e., the multi-class 
classification accuracy, would be better than that of a sin-
gle multi-class model (e.g., a neural network). One com-
parison example can be found in Liu et al. (2007), where 
OAO-SVM outperforms a neural network trained by 
error back-propagation algorithm. Since the OAO strat-
egy may achieve better accuracy, we decided to use such 
approach to accomplish the multi-class classification in 
the current study. The main drawback however, is that we 
need to train “many” binary classifiers in such pair-wise 
classification configuration for multi-class classification, 
which still results in a high computational complexity. 
Fortunately, the k-NN classifier used in the current study 
is an instance-based learning algorithm, which the train-
ing effort and computational complexity can be largely 
reduced.

Here, we extended the binary k‐NN classifier to 
solve the four‐class classification problem using OAO 
method and a majority voting strategy (Liu and Chen 
2007). This is done by sending the test data into six 
k‐NN classifiers (i.e., for N-class classification, N 
(N − 1)/2 binary classifiers can be formed). The major-
ity of the four class labels generated from the six k‐NN 
classifiers will determine the final classification output. 
The illustration of four-class models are shown in Addi-
tional file  1: Fig. S8, corresponding to the combina-
tion of tests in Table 3. In experiment 1, the data from 
TA-SA, TB-SB, TC-SC, and TD-SD are regarded as four 
different classes and each class is composed of 3000 
test data. Out of 3000 events recorded at each station 
group, 2450 of them are predicted correctly as TA-SA, 
while 1815, 2344, and 2221 are predicted correctly as 
TB-SB, TC-SC, TD-SD, respectively, leading to the CR of 
73.6%. The TA, TB, TC, and TD tremors recorded at dif-
ferent station-groups can also generate different sets 
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of four-class model, as listed by experiments 2 to 5 in 
Additional file 1: Fig. S8. Their CR however, are gener-
ally lower than that in Experiment 1. This suggests that 
the differences of path effect are likely less obvious than 
that of source effect, as the experiments 2–5 consider 
different classes from different path effects.

The greater travel distance usually leads to rapid atten-
uation of higher frequency signals, which may produce a 
trend of precision reduction with distance. In the four-
class model, however, such trend is not clear, the lowest 
precision does not always occur at the longest travel dis-
tance (lowest for TA-SD but not for TD-SA). Instead, the 
lowest precision occurs at TA-SD (Additional file  1: Fig. 
S8b), TB-SB (Additional file 1: Fig. S8c), TC-SD (Additional 
file  1: Fig. S8d), and TD-SD (Additional file  1: Fig. S8e), 
which is consistent with the two lowest precisions in 
Additional file 1: Fig. S8a. This suggests that the paths to 
SB and SD are less distinguishable comparing with other 
paths. On the other hand, the highest precisions are 
mostly observed at the paths to SA (TA-SA in experiment 
1, TA-SA in experiment 2, TB-SA in experiment 3, TD-SA 
in experiment 5), suggesting that they are strongly dis-
tinguishable from others in both source and path effects. 
TC-SC in experiment 4 also produces highest precision 
but not in experiment 1, indicating the source effect of 
TC may play more important role in the high precision 
in experiment 4. The four-class model reveals consistent 
conclusion with that from binary models—tremors sig-
nals from Areas A and C are more distinguishable com-
pared with those from Areas B and D.

There exists various machine learning approaches that 
have been used to solve classification problems, includ-
ing linear classification (e.g., logistic regression), dis-
tance estimation (k-nearest neighbors), support vector 
machines (SVM), decision tree (e.g., Random Forest), 
and neural networks. Among all, the k-NN is relatively 
easy and straightforward to interpret. The triangle tests 
designed here allows us to obtain the region-specific fea-
tures importance, leading to the interpretation of tremor 
source properties in four areas of Shikoku. However, 
the selected 7 features (Table 4) that are responsible for 
source difference in Areas A to D may be also responsi-
ble for path difference. To fully understand the impact of 
feature importance methods on the interpretation, dif-
ferent feature importance methods should be examined 
on the same dataset and classifier. For example, Random 
Forest (RF) could provide feature importance ranks dur-
ing the classification process, which has demonstrated to 
be highly efficient for multi-classes problem. It is worthy 
to explore if the various feature importance methods are 
interchangeable and can lead to the consistent conclu-
sion, in the future.

Conclusions
In this study, we first demonstrated the relevant regional 
characteristics using the tremor catalog published by 
Annoura et  al. (2016). During the study period from 1 
June 2014 to 31 March 2015, the number of tremors in 
four different areas in Shikoko (A to D, from east to west) 
was 15,000, 31,000, 10,000, and 16,000, respectively. The 
tremors of these four areas were treated as different 
classes and the tremors in the catalog were segmented 
into 60-s-long signals as the labeled data. Each class of 
tremor event was split into training (70%) and testing 
(30%) datasets. The supervised k-nearest neighbor (k-
NN) classifier was trained to distinguish tremors from 
the four areas. To identify efficient features that better 
represent the properties of the tremors in each area, we 
adopted binary classification with a set of experiments. 
When the k-NN classifier was applied to the original 29 
seismic features, the classification performance reached a 
classification rate greater than 90% at all 12 stations.

We further designed a triangle test to determine the 
features that could better represent the difference in the 
source properties of the tremors. As a result, two groups 
of features that were most useful at distinguishing trem-
ors of one area from another were identified. The first 
group considered the number of peaks in the temporal 
evolution of discrete Fourier transform (DFT) mean val-
ues (NPks_DFTmean) and DFT median values (NPks_
DFTmed), which imply a certain degree of temporal 
fluctuation in main frequency content of the tremor sig-
nals. The second group considered the energy in the first 
third of the autocorrelation function (ACF) ( ACF1/3 ), 
the energy in the remaining part of the ACF ( ACF2/3 ), 
and the ratio of above two ( ACF1/3/ACF2/3 ). Given that 
the decay rate of the ACF shows good agreement with 
attenuation structure, the fast decay of the ACF is likely 
a result of a low attenuation structure along the path of 
the tremors.

The efficient features obtained in this study provide 
insight into the tremor source properties. To explain 
NPks_DFTmed performance, the tremors in Areas B 
and C may need to have greater heterogeneity of asperi-
ties resulting from the diverse strength and size of the 
asperities in tremor zones. In contrast, tremors in Areas 
A and D are composed of more evenly distributed asperi-
ties of similar strength/size, leading to weak heteroge-
neity of asperities. Using features ACF1/3 and ACF2/3 , 
we also inferred that the size of tremor zone may decide 
the behavior of coda decay, to reconcile the attenuation 
structure 10  km above the plate interface by Kita and 
Matsubara (2016). We argue that the tremor zone needs 
to be large in Areas A and B and small in Area C and D, to 
explain the significant difference in ACF1/3 performance. 
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Together with previously documented variations in slow 
earthquake behavior between different areas, we finally 
proposed a conceptual model that provides a better 
understanding of the regional differences in the tremor 
sources of Shikoku, southwestern Japan.
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